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Numerical simulations are used to study homogeneous, forced turbulence in three-
dimensional rotating, stably stratified flow in the Boussinesq approximation, where the
rotation axis and gravity are both in the ẑ-direction. Energy is injected through a three-
dimensional isotropic white-noise forcing localized at small scales. The parameter
range studied corresponds to Froude numbers smaller than an O(1) critical value,
below which energy is transferred to scales larger than the forcing scales. The values
of the ratio N/f range from ≈ 1/2 to ∞, where N is the Brunt–Väisälä frequency
and f is twice the rotation rate. For strongly stratified flows (N/f � 1), the slow
large scales generated by the fast small-scale forcing consist of vertically sheared
horizontal flow. Quasi-geostrophic dynamics dominate, at large scales, only when
1/2 6 N/f 6 2, which is the range where resonant triad interactions cannot occur.

1. Introduction
Stratification and rotation are dominating characteristics of atmospheric and

oceanic flows. Stratification and rotation lead to two distinct types of motions:
fast three-dimensional small-scale inertial–gravity waves and slow quasi-geostrophic
large-scale flows. Quasi-geostrophic turbulence was thus a starting point to explain,
for example, the scalings of the mesoscale wind velocity spectra near the tropo-
sphere. These atmospheric spectra scale approximately as E(k) ∝ k−3 in the range
800–2500 km, and approximately as E(k) ∝ k−5/3 in the range 10–500 km (Nas-
trom & Gage 1985). Charney (1971) related quasi-geostrophic turbulence to the
two-dimensional forward enstrophy cascade range with energy spectrum E(k) ∝ k−3

(Kraichnan 1967). Lilly (1983) reasoned that initially three-dimensional isotropic
turbulence subjected to strong stratification would separate into gravity waves and
quasi-two-dimensional turbulence within horizontal layers; a two-dimensional inverse
cascade within layers, fed by convective instability (e.g. Vincent & Schlatter 1979),
could then possibly explain the observed k−5/3 scaling of the atmospheric spectra in
the range 10–500 km (Nastrom & Gage 1985). Gage & Nastrom (1986) suggested
wave breaking as the source of energy for the quasi-two-dimensional inverse cascade.
Lilly (1989) predicted, and Maltrud & Vallis (1991) demonstrated numerically, that
a forward cascade of enstrophy with E(k) ∝ k−3, fed by large-scale instability, and
an inverse cascade of energy with E(k) ∝ k−5/3, fed by small-scale instability, can
coexist without significant distortion. In this work, as in our previous studies (Smith
& Waleffe 1999), we start from fully three-dimensional flow, and investigate the
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possibility of energy transfer to large scales, including the scalings of energy spectra,
the development of structures, and transfer mechanisms.

In Smith, Chasnov & Waleffe (1996), we considered turbulence in small-aspect-ratio
domains, where the largest horizontal scale L is much greater than the largest vertical
scale H . Numerical simulations with two-dimensional forcing at scales > H showed
that the two-dimensional inverse cascade of energy is stable to three-dimensional
small-scale fluctuations. The two-dimensional isotropic inverse cascade with energy
spectrum E(k) ∝ k−5/3 is also stable to two-dimensional forcing at scales< H when the
flow is subjected to sufficiently fast rotation. In Smith & Waleffe (1999), simulations
of rotating turbulence, now with isotropic, three-dimensional, random forcing at small
scales in unit-aspect-ratio domains (L = H), revealed that backward energy transfer
can occur in fully three-dimensional rotating turbulence but its nature is different
from the two-dimensional isotropic inverse cascade. First, the transfer of energy
from small to large scales in three-dimensional rotating flow is anisotropic; only
vertically independent horizontal motions are populated for wavenumbers smaller
than the forcing wavenumbers. Second, population of modes in the horizontal plane
corresponds to the formation of large-scale cyclonic vortical columns. This is in
contrast to the isotropic energy transfer to large scales observed in two-dimensional
turbulence, in which case only finite-size effects lead to the formation of large-scale
structures (e.g. Smith & Yakhot 1994; Paret & Tabeling 1998). Third, the large-
scale energy spectrum appears to approach the scaling E(k) ∝ k−3. The presence
of anisotropic dispersive waves significantly influences the large-scale dynamics of
rotating flow. With forcing at small scales, the effects of anisotropy are even more
pronounced than in decaying rotating turbulence (see Cambon 2001 and references
therein).

All fundamental models for geophysical flows involve the complex interaction
between dispersive waves and turbulence, e.g. the β-plane model, the three-dimensional
Navier–Stokes equations in a rotating frame, the two-dimensional and three-
dimensional Boussinesq equations for rotating stably stratified flow. Similar to the
results of Smith & Waleffe (1999), simulations of forced β-plane turbulence (Smith
& Waleffe 1999; Chekhlov et al. 1996), forced two-dimensional stratified turbulence
(Smith 2001), and forced two-dimensional turbulence on a sphere (Huang, Galperin
& Sukoriansky 2000) show that, for strong rotation or stratification, energy is trans-
ferred to large scales, and accumulates on the slow manifold. In each of these cases,
the slow manifold follows from the dispersion relation by choosing the wavevector
such that the ratio of the wave frequency to the system frequency tends to zero, where
the system frequency is either the rotation rate, buoyancy frequency or inverse-time
scale βkβ , with kβ proportional to the Rossby deformation radius. Since the dispersion
relations for these flows are anisotropic, the large-scale motions are also anisotropic.
They correspond either to one-dimensional shear flows (in two-dimensional β-plane
and two-dimensional stratified flows) or two-dimensional flows (in three-dimensional
rotating flows).

The situation is more complex in three-dimensional stratified flow where there are
two kinds of zero-frequency modes: the vertically sheared horizontal flows (VSHF)
with kh ≡ (k2

x + k2
y)

1/2 = 0, and the potential vorticity (PV) modes that exist for every
wavevector k. The VSHF modes again correspond to zero wave frequency in the
dispersion relation, where the dispersion relation is given by σ±(k) = ±Nkh/k with
k = |k|. For purely stratified flow at small Froude number (Fr ≈ 0.2) forced randomly
at small scales, we find anisotropic transfer of energy to the VSHF modes. Previous
numerical calculations of forced (Herring & Metais 1989) and decaying stratified



Forced rotating stratified turbulence 147

turbulence (see e.g. Staquet & Godeferd 1998) have shown horizontal layering, but
none have exhibited the large accumulation of energy at large scales captured by our
forced simulations over long integration times. Herring & Metais (1989) used a two-
dimensional forcing with resolution 643, whereas we use a three-dimensional, isotropic
forcing with resolution 1283. An anisotropic statistical model of decaying stratified
turbulence (Godeferd & Cambon 1994) also shows energy concentration toward the
VSHF modes. That study indicates that the PV modes play a dominant role, in decay,
for the relative concentration toward the VSHF, while in our forced simulations the
inertial–gravity waves create the VSHF (§ 5). Those results are not inconsistent; rather
they underline the significant differences between long-time simulations with small-
scale isotropic forcing and short-time simulations of decay from large-scale isotropic
initial conditions. The reader is referred to the recent review by Riley & Lelong (2000)
for further discussion and references on stably stratified flows.

In rotating, stably stratified flow, the geostrophic motions are the only modes
with zero frequency. We find that they dominate at large scales when the ratio of
stratification to rotation, as measured by N/f, where N is the Brunt–Väisälä frequency
and f is twice the rotation rate, is in the range 1/2 6 N/f 6 2 for small values of the
Froude number, specifically Fr ≈ 0.21. Interestingly, this is also the N/f range where
three-wave resonant interactions cannot occur. For these values of Fr and N/f, large-
scale energy spectra are closer to power-law scaling with E(k) ∝ k−5/3, consistent with
previous calculations (Metais et al. 1996). However for N/f � 1, our simulations
show that the dominant large-scale motions are vertically sheared, horizontal flows as
in purely stratified flow, corresponding to modes with small but non-zero frequency
σ = ±f and horizontal wavenumber kh = 0. This result may be relevant to some
atmospheric dynamics where the stratificiation is much stronger than rotation. For
the opposite limit of strong rotation with weak stratification (Rossby number Ro < 1,
N/f � 1) we recover our previous results where the flow is dominated at large scales
by cyclonic vortices and the energy spectrum scales approximately like E(k) ∝ k−3

(Smith & Waleffe 1999).
A common result of Chekhlov et al. (1996), Smith & Waleffe (1999), Smith (2001),

Huang et al. (2000) and the present work is the universality of energy transfer to
large-scale slow modes when the Rossby, Froude or Rhines number is smaller than
an O(1) critical value. This result is surprising given that resonant triad interactions
cannot transfer energy from fast waves directly to slow modes with zero frequency,
at first order in a weakly nonlinear expansion in ε, where ε is the relevant small
parameter (i.e. the Rossby, Froude or Rhines number). This decoupling between fast
and slow modes for resonant triad interactions has been shown for a broad variety
of flows, namely for rotating flows (Greenspan 1969), β-plane flows (Longuet-Higgins
& Gill 1967), stratified flows (Phillips 1968; Lelong & Riley 1991), rotating stratified
flows (Bartello 1995; Embid & Madja 1998, Majda & Embid 1998), as well as
for rotating shallow-water flows (Warn 1986; Embid & Majda 1996). Asymptotically
speaking, these analyses are valid up to time scales of order 1/ε, with wave oscillations
occurring on the fast O(1) time scale. Our computations pertain to the much longer
time scale 1/ε2. We emphasize however that these asymptotic arguments only serve
as guides for our thinking because ε is fixed and not very small in our computations
(ε ≈ 0.1). In fact, there seems to be a well-defined critical εc = O(1) above which we
see a three-dimensional cascade to small scales but below which there is transfer of
energy to large scales, after long times, with generation of substantial anisotropy in
most cases. We believe that this effect is important for models of long-term change
in atmospheric dynamics, ocean circulation and climate.
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The equations for rotating stratified flows are given in § 2, along with the eigenmodes
of the linearized equations that are the basis for the numerical calculations. Section 3
gives parameter definitions and describes the details of the numerical simulations.
The numerical results are presented in §§ 4 and 5: for stratified flows with varying
Froude number (§ 4), and rotating, stratified flows with varying ratio of Rossby to
Froude number, i.e. varying values of N/f (§ 5). In all cases, we demonstrate the
nonlinear transfer of energy from fast small-scale fluctuations to slow large-scale
motions corresponding to eigenmodes of the linearized equations with zero or near-
zero frequency. We also report on a few decay experiments at the end of § 5. A general
discussion and interpretation of the results are given in § 6.

2. Governing equations and linear eigenmodes
The Boussinesq equations for vertically stratified flow rotating about the vertical

ẑ-axis, in dimensional form, are (e.g. Salmon 1998)

Dv

Dt
+ fẑ × v +Nθẑ + ∇P = νo∇2v + fu, (2.1)

Dθ

Dt
−N(v · ẑ) = κ∇2θ, (2.2)

∇ · v = 0, (2.3)

where v is the Eulerian velocity, f is twice the frame rotation rate, P is the effective
pressure, N the buoyancy frequency, D/Dt = ∂/∂t + v · ∇ is the material derivative,
νo is the kinematic viscosity, κ is the diffusion coefficient and θ, which has units of
velocity, is proportional to the density fluctuations. The total mass density ρ has been
decomposed as

ρ = ρo − bz + ρ′, ρ′ =

(
bρo

g

)1/2

θ, (2.4)

where ρo is a reference density, b is a positive constant (for uniform stable stratifi-
cation), z is the vertical coordinate and g is the gravitational acceleration. The
buoyancy (Brunt–Väisälä) frequency N is

N =

(
gb

ρo

)1/2

. (2.5)

The term fu in (2.1) represents external forcing of the velocity; note that we do not
consider external forcing of the density fluctuations θ.

In the inviscid, unforced limit (ν0 = κ = fu = 0), the Boussinesq equations (2.1)–
(2.3) conserve potential vorticity, ωa · ∇ρ:

D

Dt
(ωa · ∇ρ) = 0, (2.6)

where ωa = ω+fẑ is the absolute vorticity and ω = ∇×v is the vorticity. Conservation
of potential vorticity following fluid particles, in the Boussinesq approximaion, is
equivalent to conservation of the volume of a fluid element because ωa evolves as a
line element and ∇ρ as a surface element. The potential vorticity can be expressed in
terms of ω and θ. Using (2.4) and (2.5) yields

ωa · ∇ρ =

(
bρo

g

)1/2

(−Nf + fẑ · ∇θ −Nẑ · ω + ω · ∇θ) (2.7)
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and PV conservation (2.6) can be rewritten as(
∂

∂t
+ v · ∇

)
(fẑ · ∇θ −Nẑ · ω + ω · ∇θ) = 0. (2.8)

In the following, ‘potential vorticity’ refers to the quantity PV ≡ fẑ·∇θ−Nẑ·ω+ω·∇θ.
Conservation of potential vorticity is an important constraint on the dynamics

leading, in particular, to two distinct classes of linear eigenmodes: inertial–gravity
waves with non-zero frequency and zero potential vorticity, and PV modes with zero
frequency and non-zero potential vorticity. For an unbounded or periodic domain,
the linear eigenmodes of (2.1)–(2.3) are Fourier modes(

v
θ

)
(x, t) = φ(k)ei(k·x−σ(k)t), (2.9)

where φ = (v̂, θ̂). There are only three modes per wavevector as a result of the
continuity constraint (2.3). In general, two of these modes φ± have non-zero frequency
σ± and the third φ0 has zero frequency σ0 = 0. The latter corresponds to a PV mode,
while the former are inertial–gravity waves with no PV. Indeed in the linear limit, PV
conservation (2.8) reduces to

∂

∂t

(
fẑ · ∇θ −Nẑ · ω

)
= 0, (2.10)

or σ(ifkzθ̂ − Nω̂z) = 0 in Fourier space. This requires σ = 0 for PV modes or

ifkzθ̂ −Nω̂z = 0 (i.e. no linear PV) for wave modes.
Substituting (2.9) into the linearized form of equations (2.1)–(2.3) leads to the

dispersion relation for the inertial–gravity waves

σ±(k) = ± (N2k2
h + f2k2

z )
1/2

k
, (2.11)

where kh =
(
k2
x + k2

y

)1/2
. The eigenfunction φ+ corresponding to σ+ in (2.11) is

φ+ =
1√
2 σk

(
kz

kh

(
σkx + ikyf

)
,
kz

kh

(
σky − ikxf

)
,−σkh,−iNkh

)
, (2.12)

where σ = |σ±(k)|. The eigenfunction φ− corresponding to σ− in (2.11) is the complex
conjugate of φ+. The PV mode φ0, which has zero frequency (σ0 = 0), is

φ0 =
1

σk

(
Nky,−Nkx, 0, fkz

)
. (2.13)

Its contribution to the linear part of the PV (2.10) has the simple form ifkzθ̂−Nω̂z =
iσk = i(N2k2

h + f2k2
z )

1/2.
Two special cases must be considered: (i) kh = 0 and (ii) kz = N = 0. For case (i),

when the wavevector is parallel to the rotation and stratification axis, orthonormal
eigenfunctions satisfying continuity are

φ+ =

(
1 + i

2
,
1− i

2
, 0, 0

)
, φ− = φ+, φ0 = (0, 0, 0, 1), (2.14)

where the overline denotes complex conjugate. These are the vertically sheared hori-
zontal flow modes or VSHF modes. They have no vertical vorticity and no potential
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vorticity. They also have no vertical velocity because of the continuity constraint
(2.3). The wave frequencies corresponding to φ+ and φ− are, respectively, σ+ = f and
σ− = −f. Density fluctuations represented by φ0 have zero frequency, σ0 = 0. Special
case (ii), kz = N = 0, corresponds to pure rotation with wavevector perpendicular to
the rotation axis. In this case, the eigenmodes are all slow (geostrophic) modes with
zero frequency σ+ = σ− = σ0 = 0, taken as

φ+ =
1√
2 kh

(iky,−ikx,−kh, 0), φ− = φ+, φ0 = (0, 0, 0, 1). (2.15)

In the (numerical) solution and analysis procedure, we expand the Fourier-
transformed velocity and density fluctuations in terms of the orthonormal, solenoidal
eigenmodes (

v̂

θ̂

)
(k, t) = a+(k, t)φ+(k) + a−(k, t)φ−(k) + a0(k, t)φ0(k), (2.16)

a(α)(k, t) = φ(α) ·
(
v̂

θ̂

)
(2.17)

where α = −, 0,+. In the inviscid, unforced case (ν0 = κ = fu = 0), the evolution of
aαexp(iσ(α)t) results from nonlinear interactions only

d

dt
(aα exp iσαt) = −φα ·

(
v̂ · ∇v
v̂ · ∇θ

)
exp (iσαt), (2.18)

where v̂ · ∇v and v̂ · ∇θ are the Fourier transforms of the nonlinear terms. Note
that with these eigenmode definitions, reality of the underlying fields, which requires
u(k) = u(−k), does not imply aα(k) = aα(−k) for the modal amplitudes. For the PV
modes (2.13) for instance, reality implies a0(k) = −a0(−k).

3. The numerical simulations
Equations (2.1)–(2.3) are solved using a pseudo-spectral code in a triply periodic

cube of resolution 1283 Fourier modes. The linear terms are treated using an inte-
grating factor technique, in effect removing them from the time integration (as in
(2.18) above). The viscous term is treated with an integrating factor as well (Ro-
gallo 1981). At each step of the third-order Runge–Kutta time-stepping scheme, the
Fourier-transformed velocity and density fields are projected onto the eigenmodes
(2.16), and each mode is multiplied by the proper time-integration factor. The time
step is chosen to sufficiently resolve the wave oscillations (i.e. σ∆t < (N+ f)∆t < 0.2).
The projection onto the inertial–gravity modes automatically satisfies the incompress-
ibility constraint and eliminates pressure. The nonlinear terms v · ∇v and v · ∇θ are
calculated in physical space and fast Fourier transforms (FFTs) are used to go back
and forth between Fourier and physical space. The simulations were performed on
Silicon Graphics multi-processor computers, which provide compiler parallelization
and optimized, parallelized FFTs. The code runs at 36 s per time step on four SGI 12K
270 MHz processors (a local SGI Origin200). Our longest run was for N/f = 100,
which was integrated for 62 600 time steps, and thus required about twenty-six days
of computer time.

The forcing spectrum F(k) is Gaussian with standard deviation s = 1 and energy
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input rate εf = 1, given by

F(k) = εf
exp(−0.5(k − kf)2/s2)

(2π)1/2s
. (3.1)

Based on the energy input rate εf and the peak wavenumber kf of the force, we define
the Froude and Rossby numbers as

Fr =
(εfk

2
f)

1/3

N
, Ro =

(εfk
2
f)

1/3

f
. (3.2)

For the runs presented in § 4 (f = 0), we vary N and kf to vary the Froude number,
and in § 5, we fix N = 40 and kf = 24 such that the Froude number is Fr = 0.21 and
vary the Rossby number. Note that N/f = Ro/Fr.

The dissipation of the velocity at small scales is modelled by a hyperviscosity term

(−1)p+1ν(∇2)pv (3.3)

(with p = 8 unless otherwise specified) in place of the normal viscosity term ν∇2v.
Likewise the dissipation of the density fluctuations is modelled by (−1)p+1κ(∇2)pθ.
The purpose of using hyperviscosity, which turns on much more abruptly than the
gradual increase of normal viscosity at small scales, is to eliminate as much as possible
the effects of viscosity at intermediate scales, thus extending the turbulence inertial
ranges. Following Chasnov (1994), the hyperviscosity is taken to be

ν ≡ 2.5

(
E(km, t)

km

)1/2

k2−2p
m (3.4)

where km is the highest available wavenumber and E(km, t) is the kinetic energy
in the highest available wavenumber shell. A similar expression is used for the
hyperdissipation, using the energy of the density fluctuations in the highest available
wavenumber shell. By using random forcing and hyperviscosity at small scales,
we in effect assume a Langevin-type model for the small-scale dynamics, as in
idealized climate models (Hasselman 1976; Majda, Timofeyev & Vanden Eijnden
1999). The large-scale dynamics are then fully resolved. In order to study the nonlinear
interactions between waves in isolation from other effects, we consider periodic flows,
thereby eliminating viscous boundary layers. Although the atmosphere is periodic
in the horizontal directions, there are some periodic large-scale flows that will be
excluded by, for example, ocean boundaries. All simulations are dealiased using the
2/3 rule (see e.g. Canuto et al. 1988).

4. Stratified turbulence (f = 0, N 6= 0)

For purely stratified turbulence, we begin by comparing kinetic energy† vs. time
for three values of the Froude number, Fr = 0.42, 0.28 and 0.21 (figure 1). Three
of the four runs shown in figure 1 have peak forcing at kf = 24 (solid curves), and
one has kf = 20 (Fr = 0.21, dashed curve). For Fr = 0.42, after a short period of
initial growth, the kinetic energy does not grow in time for nonlinear times up to
T ≡ t(εfk

2
f)

1/3 ≈ 800; all of the energy input by the random force is dissipated at
small scales by viscosity, and there is no transfer of energy to scales larger than the

† Unconventially, we define the ‘kinetic energy’ as the volume average of |v|2/2. Likewise, the
(available) ‘potential energy’ is the volume average of θ2/2.
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Figure 1. Kinetic energy vs. time (f = 0). The solid curves have peak forcing wavenumber kf = 24
and the dashed curve has peak wavenumber kf = 20.

forcing scales. For the other runs with Fr = 0.28 and 0.21, there is strong growth of
the kinetic energy after several hundred nonlinear times, indicating transfer of energy
to scales larger than the forcing scales. Thus there is a critical value of the Froude
number below which energy is transferred simultaneously to large and small scales,
similar to the case of purely rotating turbulence in which there is a critical Rossby
number for the transfer of energy to large scales (Smith & Waleffe 1999). For these
moderate values of the Froude number Fr = O(10−1), the difference between the
energy input rate and the energy dissipation rate, denoted ε<, increases as the Froude
number decreases below that critical value.

Figure 2 shows spectra for the run with Fr = 0.21 and kf = 24, at the latest time
(T ≈ 900 in figure 1). The spectrum E(k) of the total kinetic energy is given by the
solid line, and the spectrum of kinetic energy in the VSHF modes (with kh = 0)
is given by the dashed line. Recall that the VSHF modes have kinetic energy only.
One sees a pile-up of energy, especially in wavenumbers kz = 9 and 11, where all
of the energy is in the VSHF modes, corresponding to vertically sheared, horizontal
layers. The energy spectrum of the (unforced) density fluctuations is shown in figure 2
by the dash-dot line; there is clearly a weaker transfer of potential energy to scales
larger than the forcing scale. The transfer of potential energy to larger scales must
be the result of inertial–gravity wave interactions because the PV modes (2.13) have
zero scalar component when f = 0. In this way the scalar transfer is a diagnostic,
suggesting that wave interactions are responsible for the transfer of energy to larger
scales. A simulation for N/f = 100 with the PV modes artificially suppressed indicates
that the PV modes do indeed inhibit the transfer of energy to large scales by the
waves for large N/f (see § 5). Figure 3 shows spectra for the run with Fr = 0.21 and
kf = 20, at the latest time of the run (T ≈ 1500 in figure 1). As for kf = 24, all of
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Figure 2. Kinetic energy (solid) vs. wavenumber for Fr = 0.21 (f = 0) with peak forcing wave-
number kf = 24 (T ≈ 900). The dashed line is energy in the VSHF modes (2.14), and the dash-dot
line is the potential energy in the density fluctuations.

the large-scale kinetic energy is in the VSHF modes (dashes), and now the pile-up of
energy is most pronounced for wavenumbers kz = 7 and 9.

The pile-up of energy in selected small wavenumbers is clearly a long-time effect,
noticeable only after several hundred nonlinear time scales. This is probably the main
reason why it has not been previously observed. The wavenumber selection and lack
of power-law scaling appears to be related to the PV modes and perhaps also to
the low resolution. The simulation for N/f = 100 with PV modes suppressed shows
earlier growth of energy and spectra with less wavenumber selectivity (figures 4 and
8). Simulations of forced two-dimensional stratified turbulence at resolution 5122,
where PV modes do not exist, also show energy accumulation in the VSHF without
wavenumber selectivity (Smith 2001).

5. Rotating stratified turbulence (f 6= 0, N 6= 0)

5.1. Forced for H/L = 1

Kinetic energy vs. time for Froude number Fr = 0.21 and varying values of the Rossby
number Ro = 21, 2.1, 0.42, 0.21 and 0.10 is shown in figure 4. Here the peak forcing
wavenumber kf is fixed at kf = 24. The run with Fr = 0.21 and Ro = 21 (N/f = 100),
relevant to atmospheric mesoscales, was integrated to T ≡ t(εfk

2
f)

1/3 ≈ 2200, which
is off the scale of figure 4. In all cases, energy is transferred to scales larger than
the forcing scales, but the transfer process is much slower for times T < 400 for
N/f = 100 and 10 than it is for the smaller ratios 1/2 6 N/f 6 2. The strong growth
of kinetic energy after T ≈ 400 for large ratios N/f = 100 and 10 corresponds
to pile-up of the total energy ET (k) (kinetic and potential) in VSHF (near-zero)
modes with kh = 0 and frequency σ± = ±f � N. As in the case of purely stratified
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Figure 3. Kinetic energy (solid) vs. wavenumber for Fr = 0.21 (f = 0) with peak forcing wave-
number kf = 20 (T ≈ 1500). The dashed line is energy in the VSHF modes (2.14), and the dash-dot
line is the energy of density fluctuations.

turbulence, the pile-up occurs in selected wavenumbers kz smaller than the forcing
wavenumbers (figures 5 and 9). For N/f = 100, after 2200 nonlinear times, the most
energetic wavenumbers are 5 6 kz 6 12, with peaks remaining at kz = 5, 8, 11 and
12. For even longer times, it is not clear how the energy spectrum of these large-scale
modes will evolve, but there is no indication of power-law scaling for these times
T < 2200. The rate of energy input ε< to large scales appears to approach a constant
value of ε</εf ≈ 0.025 (see figure 6), i.e. the energy input to large scales is only about
2.5% of the total energy input. Using the data of Vincent & Schlatter (1979), Smith &
Yakhot (1994) estimated that on the order of 5% of the energy generated in cumulus
clouds is transported to the synoptic scales, consistent with the present simulations at
large N/f. The physical-space velocity field consists of vertically sheared, horizontal
layers with spacing between 2π/5 = 1.26 and 2π/12 = 0.52 (figure 7).

In order to investigate the role of the PV modes in the dynamics for large N/f,
we ran a simulation for Fr = 0.2 and N/f = 100, where the forcing remained the
same but the PV modes were artificially removed at each time step (i.e. a0 = 0 in
(2.16)). The suppression of the PV modes effectively reduces the energy input rate
εf by 1/3 and therefore the Froude and Rossby numbers (3.2) by 13%. Nonetheless,
the energy grows earlier and faster when the PV modes are suppressed (curve with
triangles in figure 4). Spectra at time T ≈ 1608 are shown in figure 8, which should
be compared to figure 5. The spectra of the no-PV simulation also show the strong
energy concentration in the VSHF but they do not show the wavenumber selectivity
seen in the full simulations. It is not impossible that the spectra may in fact be
building toward E(k) ∝ k−3 scaling, analogous to forced rotating flow (Smith &
Waleffe 1999). The spectra also show significantly more available potential energy at
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Figure 4. Kinetic energy vs. time for Fr = 0.21 and varying values of N/f.

the largest scales. Based on this simulation, it seems clear that the PV modes inhibit
the transfer of energy to large scales of the VSHF by the wave modes for large N/f.

As can be seen in figure 9, for N/f = 10 at T = 605, the VSHF modes dominate
for 11 6 kz 6 15. The physical-space velocity field consists of horizontal layers with
rough spacing of about l ≈ 0.5. The PV modes are seen to dominate at smaller
wavenumbers k < 8, but with energy an order of magnitude smaller than the energy
of the VSHF modes with 11 6 kz 6 15. At this value of N/f = 10, there is a
competition at large scales between the near-zero VSHF modes and the exactly zero
PV modes.

With Froude number Fr = 0.21 and moderate values of the Rossby number
0.10 6 Ro 6 0.42, energy is transferred from the forced modes to the large-scale PV
modes. Figure 10(a–c) shows, respectively, energy spectra for Ro = 0.42, 0.21 and
0.10. One sees that in all three cases, the total energy (solid) and the energy in the
PV modes (long dashes) coincide for scales larger than the forcing scale. All spectra,
including the spectrum of kinetic energy (short dashes) and the spectrum of density
fluctuations (dash-dot), are closer to power-law behaviour than the spectra for large
values of N/f, and one could speculate that the scaling k−5/3 would be confirmed by
higher resolution data.

Since there are no resonant triad interactions in the range 1/2 6 N/f 6 2, as shown
in the discussion section, the latter do not play a role in energy transfer to large scales
in this parameter range where the dominant large scales are the geostrophic motions.
Figure 11 shows spectra from a simulation of forced quasi-geostrophic turbulence,
where the forcing is identical but the waves are artificially removed at each time
step (i.e. a± = 0 in (2.16)), with Fr = 0.21, N/f = 2 and T ≈ 110. The spectra
are very similar to spectra for the full simulation (figure 10a). However, it takes less
time for energy to reach the box size when the waves are removed. The waves thus
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total energy in the VSHF modes (2.14) with σ± = ±f (long dashes); potential energy of the density
fluctuations (dash-dot).

appear to reduce slightly the efficiency of the quasi-geostrophic inverse energy cascade.
Similar results were found for forced quasi-geostrophic turbulence with Fr = 0.21
and N/f = 1, 2.

With the Froude number fixed at Fr = 0.21 and decreasing N/f (N/f = 2, 1 and
1/2), the physical-space fields show an increased tendency towards the development
of vortical columns. Two contour levels of the zonal velocity for the run with
Fr = 0.21 and N/f = 2 (Ro = 0.42) are shown in figure 12(a), where one sees a
fully three-dimensional structure, perhaps with tendency towards a layered structure.
Figure 12(b) shows two contour levels of the zonal velocity for the run with Fr = 0.21
and N/f = 1/2 (Ro = 0.1). In contrast to figure 12(a), one sees in figure 12(b) a
tendency towards vortical columns with some vertical structure (some dependence on
the vertical wavenumber kz). The same result is found for forced quasi-geostrophic
turbulence, where only the PV modes are kept. Thus, for fixed Fr = 0.21, there is
a smooth transition from vertically sheared, horizontal layers to vortical columns as
the Rossby number is decreased. For the case of pure rotation at the same Rossby
number Ro = 0.1 (Smith & Waleffe 1999), there is transfer of energy from the forced
modes to large-scale modes with kz = 0, corresponding to large-scale cyclonic vortical
columns.

5.2. Forced for H/L = 1/2

Since horizontal length scales are greater than vertical length scales in most geo-
physical flows, it is natural to ask how the results vary with aspect ratio H/L. We
have already discussed one problem associated with small-aspect-ratio simulations
and finite resolution, namely the severe restriction of resonant triads: sparsity of
wavenumbers inhibits resonant transfer. In purely rotating turbulence forced in the
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three-dimensional range of scales, we found an isotropic two-dimensional inverse
cascade instead of an anisotropic three-dimensional energy transfer to large scales for
H/L = 1/12 with resolution 240× 240× 40, and also for the larger ratio H/L = 1/4
but with lower resolution 128× 128× 32 (Smith & Waleffe 1999). Here we performed
a simulation with H/L = 1/2, Fr = 0.23 and N/f = 100 such that NH/(fL) = 50,
with resolution 160 × 160 × 80. The non-dimensional parameter NH/(fL) is the
square root of the Burger number. The grid is isotropic at the largest wavenumber
(Smith et al. 1996), leading to ∆kz ≈ 1.6 and ∆kh ≈ 0.8. With this discretization, and
peak forcing wavenumber kf ≈ 27, we find essentially the same results as for the
unit-aspect-ratio box with N/f = 100 (figures 5 and 7), however the growth of the
energy is delayed (curve with crosses in figure 4). In the H/L = 1/2 case, the energy
once again accumulates in the VSHF, primarily in the range 11 6 k 6 12.
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T ≈ 110 in quasi-geostrophic turbulence (waves artificially removed); kinetic energy (short dashes);
potential energy of the density fluctuations (dash-dot).

5.3. Decaying for H/L = 1

Although we did not complete a thorough study of decaying turbulence, we did
investigate decay for the three cases Fr = 0.21 and N/f = 100, 1 and 1/2, starting
from the flow fields at the latest times of our forced simulations. Here we used
hyperviscosity with p = 4 instead of p = 8 to accelerate the decay, but still without
damping directly the largest scales. For the first case N/f = 100, the energy remains
in the large-scale VSHF modes for 2000 nonlinear times, without significant change
in the structure of the physical-space fields. This is expected as the flow is nearly
one-dimensional and there are no nonlinear interactions in a one-dimensional flow,
but confirms stability of the flow. For N/f = 1, there is an initial period of decay
in both the kinetic and potential energies, followed by a period of O(102) nonlinear
times during which the velocity field gains energy from the density fluctuations such
that the kinetic energy grows, even though the total energy decreases. The transfer of
kinetic energy to large-scale geostrophic modes continues, and because of the finite
box size, kinetic energy begins to accumulate in the geostrophic modes with k = 1
(figure 13). The accumulation of energy in k = 1 corresponds to the formation of
vortical columns (figure 14). The spectrum of the total energy and the spectrum of
the geostrophic motions are virtually identical (figure 13), with a power-law scaling
somewhat steeper than k−3 and more like k−4. Similar results are found for N/f = 1/2
(Fr = 0.21, Ro = 0.10).

6. Summary and discussion
For rotating and stratified flow with N/f ≈ 100 typical of atmospheric mesoscales,

there is conflicting evidence for up-scale energy transfer. As discussed by Lilly
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et al. (1998), meteorologically oriented models show isotropic up-scale energy trans-
fer characterized by energy spectrum E(k) ∝ k−5/3, while previous forced turbulence
simulations of the type performed in this work have generally not supported strong
up-scale transfer of energy. The presence of the large-scale spectrum E(k) ∝ k−5/3

in the meteorological models may be partly due to insufficient vertical resolution.
Our simulations of rotating flow with low vertical resolution showed a large-scale
spectrum close to E(k) ∝ k−5/3 instead of the long-time scaling E(k) ∝ k−3 found for
increased vertical resolution equal to the horizontal resolution (1283 Fourier modes)
(Smith & Waleffe 1999). Bartello (1998) also finds a large-scale energy spectrum
E(k) ∝ k−5/3 in a calculation with enhanced vertical dissipation. The lack of strong
up-scale energy transfer in some turbulence simulations is perhaps due to the com-
bination of increased vertical resolution but insufficient integration time. The present
forced turbulence simulations have resolution 1283 Fourier amplitudes and very long
integration times (up to 2200 nonlinear time scales (εfk

2
f)
−1/3 for N/f = 100).

For N/f = 100, and more generally N/f � 1, our simulations show an interesting
new phenomenon, namely the pile-up of energy in vertically sheared, horizontal
motions. A large amount of energy accumulates in selected large scales and there
is no power-law scaling of the large-scale energy spectrum. Embid & Majda (1998)
emphasize that the slow motions in the low Froude number, finite Rossby number
limit (Fr → 0, Ro fixed, hence N/f = Ro/Fr → ∞) consists not only of the three-
dimensional horizontal motions v = ẑ × ∇ψ(x, t) corresponding to the PV modes
(2.13), but also of a vertically sheared, horizontal flow VH (z, t) corresponding to the
VSHF modes (2.14). In the limiting dynamics, both components decouple from the
fast inertial–gravity waves but the VH (z, t) component evolves due to the Coriolis and
diffusion terms only (no nonlinear term). Hence the limiting equations do not reveal
what, if anything, could generate such motions. However, if the vertically sheared
horizontal flow VH (z, t) is present in the initial conditions then it has a major effect
on the dynamics as it shears the PV component of the slow motions, ẑ × ∇ψ(x, t).
This shearing leads to strong shear-induced diffusion of that component as illustrated
by the exact solutions of Majda & Grote (1997). The flow then tends to a layered
or ‘pancake’ structure as opposed to the columnar structures observed in quasi-
geostrophic turbulence when VH (z, t) is absent (McWilliams, Weiss & Yavneh 1994).
In this paper, we have shown that the shear flow VH (z, t) is in fact generated on long
time scales from small-scale random forcing for small but finite Froude number and
large N/f, namely Fr = 0.21, N/f = 10, 100 and ∞. Furthermore, our results show
that wave interactions are responsible for the generation of the vertically sheared
horizontal flow VH (z, t). The PV modes seem to merely slow down the generation of
VH (z, t) (figure 8). In the opposite limit, Ro→ 0, Fr fixed (i.e. N/f → 0), the limiting
equations consist of the two-dimensional equations for the z-independent geostrophic
flow. For small Ro and N/f = 0, our earlier calculations (Smith & Waleffe 1999)
did show the analogous generation of large-scale columnar motions, corresponding
in fact to cyclonic vortical columns, from small-scale random forcing.

We do not observe the generation of large-scale cyclonic columns or large-scale
vertically sheared horizontal flow VH (z, t) at small Froude and/or Rossby numbers
when 1/2 6 N/f 6 2, although we still observe population of large scales, with the
large-scale spectrum scaling approximately like E(k) ∝ k−5/3. In that range, the PV
modes dominate the dynamics. Simulations in which the waves are artificially removed
(figure 11) do not show significant differences with the full simulations except that the
transfer of energy to large scales by the PV mode interactions is slightly faster. This
suggests that the waves are essentially insignificant but have a slight decorrelation
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effect on the PV mode interactions, thereby reducing the efficiency of the inverse
cascade.

6.1. Resonant triads

It is easy to show that the range 1/2 6 N/f 6 2 is precisely the range where resonant
triad interactions of inertial–gravity waves cannot occur. Resonant triad interactions
require k+ p+ q = 0 and σ(k) +σ(p) +σ(q) = 0 where the wave frequency σ is given
in (2.11). It is clear that if N = f then σ = ±N, ∀k, and the sum of three frequencies
cannot vanish. Indeed, in that case σ(k) + σ(p) + σ(q) = ±N,±2N,±3N. More
generally, (2.11) implies that min |σ| = min(N, f) and max |σ| = max(N, f), with these
extremas occurring at kz = 0 or kh = 0. The resonance condition σ(k)+σ(p)+σ(q) = 0
implies that two of those frequencies must have the same sign while the third has
the opposite sign. One can choose σ1, σ2, σ3 > 0 without loss of generality and
write the resonance condition as σ1 + σ2 = σ3. This relation can only be satisfied
if 2(min(N, f)) < max(N, f), where we can take the strict inequality because the
wavectors must form a triangle and this cannot happen with two horizontal and one
vertical wavevectors or vice versa. Hence resonant triads are not possible when

1

2
6
N

f
6 2. (6.1)

Outside but near this range, there are very few resonant triads, if any. Therefore,
we expect that resonant triads can play a significant role only if N/f � 1/2 or
2 � N/f. Our simulations show that the PV modes are insignificant when Fr is
small but N/f is large. This suggests that resonant triads, or rather near-resonant
triads, of inertial–gravity waves are responsible for the generation of the vertically
sheared horizontal flow VH (z, t) when Fr is smaller than an O(1) critical value and
N/f is large, and for the generation of large-scale cyclonic vortices when Ro and N/f
are small. This analysis can be extended further. For N/f < 1/2, the first resonant
triads that come into play consist of one vertical mode (0, 0, kz) (corresponding to
the largest σ3 = f), and two nearly horizontal modes p, q with ph = qh � |pz|, |qz|
and |kz| because kz + pz + qz = 0. The ‘instability assumption’ (Waleffe 1993) then
suggests that, statistically, energy in such a triad will be transferred from the large-
scale fast vertical mode to the small-scale slower nearly horizontal modes. Likewise,
for 2 < N/f the first resonant triads consist of one large-scale fast horizontal mode
and two slower, nearly vertical, small-scale modes. One expects transfer from the
large-scale fast horizontal mode to the slower small-scale nearly vertical modes in
this case. These arguments suggest that the first resonant triad interactions that arise
when N/f < 1/2 tend to two-dimensionalize the flow (columnar structures), while
those that first arise when 2 < N/f tend to ‘one-dimensionalize’ the flow (pancake
structures).

6.2. Quasi-geostrophic equation

In the range 1/2 6 N/f 6 2 our forced simulations show that the PV modes strongly
dominate at scales larger than the forcing. The large-scale dynamics can thus be
seen as resulting from PV mode interactions only. In the absence of forcing and
dissipation, those φ0 interactions are, from (2.13) and (2.18),

d

dt
a0
k =

∑
k+p+q=0

Ckpq a0
p a

0
q , (6.2)
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where

Ckpq =
iN(p × q · ẑ)
σkk σpp σqq

(σ2
qq

2 − σ2
pp

2) (6.3)

with σkk =
(
N2k2

h + f2k2
z

)1/2
. The triad constraint k+p+q = 0 implies that (p×q ·ẑ) =

(q × k · ẑ) = (k × p · ẑ), so Ckpq consists of a cyclically symmetric coefficient times
(σ2
qq

2 − σ2
pp

2). Therefore,

Ckpq + Cpqk + Cqkp = 0, (6.4)

σ2
kk

2Ckpq + σ2
pp

2Cpqk + σ2
qq

2Cqkp = 0, (6.5)

and triad interactions have two quadratic invariants: the total energy (kinetic +
potential)

|a(k, t)|2 + |a(p, t)|2 + |a(q, t)|2 (6.6)

and the quadratic part of the potential enstrophy

σ2
kk

2|a(k, t)|2 + σ2
pp

2|a(p, t)|2 + σ2
qq

2|a(q, t)|2. (6.7)

The equation (6.2) for the PV interactions only can be inverse-Fourier transformed.
Letting ψ̂k ≡ −Na0

k/(σkk) one can check easily that (6.2), (6.3) is the Fourier transform
of (

∂

∂t
+ v · ∇

)(
∇2
H +

f2

N2

∂2

∂z2

)
ψ(x, t) = 0, (6.8)

where ∇2
H = ∂2/∂x2 + ∂2/∂y2 and v = ẑ × ∇ψ, θ = −(f/N)∂ψ/∂z. This is the

quasigeostrophic equation† (Charney 1971) which conserves, in particular, the total
energy

2
dE

dt
≡ d

dt

〈(
∂ψ

∂x

)2

+

(
∂ψ

∂y

)2

+
f2

N2

(
∂ψ

∂z

)2
〉

= 0 (6.9)

and the total ‘pseudo’-potential enstrophy

2
dF

dt
≡ d

dt

〈(
∇2
Hψ +

f2

N2

∂2ψ

∂z2

)2
〉

= 0, (6.10)

where the angled brackets 〈〉 denote an integral over the domain. These two quadratic
invariants are particularly important because they are the only invariants that are con-
served at the level of elementary triad interactions, as shown above (6.3).‡ As Charney
(1971) discussed, there is therefore a very close analogy between quasi-geostrophic
and two-dimensional turbulence. One can perform the same type of analysis for quasi-
geostrophic turbulence as that of Kraichnan (1967) for two-dimensional turbulence,
suggesting that forced simulations as performed in this paper would show a k−5/3

inverse cascade of energy and a k−3 forward cascade of ‘pseudo’-potential enstrophy.
We do indeed observe a large-scale spectrum E(k) ∝ k−5/3 when the PV modes dom-

† Salmon (1988, p. 81) discusses a similar ‘derivation’ of the quasi-geostrophic equation for
rotating shallow-water, where resonant triads can never occur (see Embid & Majda 1996 for a
rigorous asymptotic derivation).
‡ Conservation of ‘pseudo’-potential enstrophy by PV mode interactions is an exact result that

can be deduced from conservation of potential enstrophy. No approximation or limiting process
(e.g. Fr → 0) is required. However, whether the full dynamics is well approximated by interactions
of only the PV modes requires Fr sufficiently small and 1/2 6 N/f 6 2.
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inate, i.e. for Fr smaller than an O(1) critical value but only when 1/2 6 N/f 6 2.
The small-scale spectrum remains dominated by the inertial–gravity waves.

This ‘derivation’ of the quasi-geostrophic equation appears more restrictive than
other derivations as it requires that 1/2 6 N/f 6 2. However, typical derivations
include other assumptions such as strong vertical/horizontal scale disparity (H � L)
and/or hydrostatic equilibrium. Both assumptions have a major impact on resonant
wave interactions. When H � L, the vertical wavenumbers are much sparser than
the horizontal wavenumbers, thereby limiting possible (near) resonant interactions.
The further delay in the strong growth of the energy in our simulation for H/L =
1/2 with respect to the simulation for H/L = 1 (figure 4) is consistent with that
interpretation. Likewise, the hydrostatic approximation, whose validity requires both
f/N ≈ |kz|/kh � 1, significantly alters the dispersion relation and thus resonant
interactions. In fact, the rotating shallow-water equations have no resonant triads (e.g.
Embid & Majda 1996). The recent studies of Embid & Majda (1998) emphasize that
asymptotic validity of the quasi-geostrophic equations requires N/f fixed as Fr → 0.
Our results suggest the tighter constraint 1/2 6 N/f 6 2 for small but finite Fr.

7. Conclusions
We have considered the forced, rotating, stably stratified Boussinesq equations.

The random forcing is localized at (large) wavenumber kf and is white-in-time,
providing a constant rate of (kinetic) energy input εf . The Froude and Rossby numbers
based on the forcing parameters have the well-defined values Fr = N−1(εfk

2
f)

1/3 and

Ro = f−1(εfk
2
f)

1/3, respectively, where N is the buoyancy frequency and f is twice the
rotation rate. The numerical results show that when the Froude number is less than
an O(1) critical value (≈ 0.5), there is transfer of energy from the small to the large
scales. The nature of this transfer depends critically on the ratio N/f. For 2� N/f,
the large scales that arise from the small-scale forcing have the form of a vertically
sheared, horizontal flow VH (z, t) and the PV modes play a secondary, retarding role.
For 1/2 6 N/f 6 2, resonant triads cannot occur and our simulations show that
the inertial–gravity waves are insignificant and the dynamics is completely dominated
by the PV modes. This is quasi-geostrophic turbulence characterized by the inviscid
conservation of two quadratic invariants and a k−5/3 inverse energy cascade. Near
N/f ≈ 1/2 the flow shows the development of vortical columns. For N/f � 1/2, the
flow presumably tends to the state observed in our earlier calculations for Ro ≈ 0.1,
N/f = 0, where the flow becomes dominated by large-scale cyclonic vortices. These
results suggest that 1/2 6 N/f 6 2 is the domain of validity of the quasi-geostrophic
model.

Challenges for future research are to understand further the role of resonant triads
for N/f < 1/2 and N/f > 2 and to understand what controls the predominantly
cyclonic circulation of the vortical structures when N/f → 0. In addition, it would
be interesting to deduce effective asymptotic equations that capture the generation of
large scales by wave interactions over long time scales. Most equations are usually
deduced from scaling presumptions that filter out the waves at the outset. An exception
is the work of Julien, Knobloch & Werne (1998) in rapidly rotating flow (N = 0)
that includes both geostrophic modes (2.15) and slow inertial waves ((2.12), with
N = 0, |kz| � kh). As discussed in our earlier work (Waleffe 1993; Smith & Waleffe
1999), resonant interactions can be called upon to transfer energy from fast to
slow inertial waves. However, simply including all the resonant interactions in the



Forced rotating stratified turbulence 167

asymptotic equations is not computationally effective because of the cost associated
with identifying and selecting those interactions.
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